
1

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

2

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

3

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

4

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

5

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

6

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

7

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

8

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

9

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

10

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

11

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

12

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

13

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

Here DocumentA here document is a form of quoting that allows shell variables to be

substituted. It’s a special form of redirection that starts with <<WORD and ends with WORD as

the only contents of a line. In the Bourne shell you can prevent shell substitution by escaping

WORD by putting a \ in front of it on the redirection line, i.e. <<\WORD, but not on the ending

line.
The following scripts illustrate this,

for the Bourne shell:

#!/bin/sh

does=does

not=""

cat << EOF

This here document

$does $not

do variable substitution

EOF

cat << \EOF

This here document

$does $not

do variable substitution

EOF \EOF

 the output:

This here document

does

do variable substitution

This here document

$does $not

do variable substitution

In the top part of the example the shell variables $does and $not are substituted. In the bottom

part they are treated as simple text strings without substitution.

PREDEFINED LOCAL VARIABLES:

Some predefined local variables in Bourne shell having special meaning are listed below:

$@ : an individually quated list of all the positional parameters

$# : the number of positional parameters

$? : the exit value of th last command

$! : the process id of the lst background command

$- : the current shell option assigned from the command line

expr expression

The command expr evaluates expression and sends the result to the standard output. All of

the components of the expression must be seperated by blanks, and allof the shell metacharacters

must be escaped by a \. In an expression the following operators may be used.

* / % : the number of positional parameters

+ - : the exit value of the last command

= \> \>= \< \<= != : the comparison operators

\& : logical “and”

\| : logical “or”

Escaped parantheses \(and \) may be used to explicitly control the order of evalution.

14

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

CONDITIONAL EXPRESSIONS

The utility test returns a 0 exit status if the given expression evaluates to true; it returns a

non-zero exit status otherwise. The exit status of the test command is typically used by the shell

control structures for branching purposes. The syntax is as follows:

test expression

or equivalently the following may be used instead of the above form

[expression]

The expression may be written in the following forms

str1=str2 : true if str1 is equal to str2

str1!=str2 : true if str1 is not equal to str2

string : true if string is not null

int1 –eq int2 : true if int1 is equal to int2

int1 –ne int2 : true if int1 is not equal to int2

int1 –gt int2 : true if int1 is greater than int2

int1 –ge int2 : true if int1 is greater or equal to int2

int1 –lt int2 : true if int1 is less than int2

int1 –le int2 : true if int1 is less or equal to int2

!expr : true if expr is false

expr1 –a expr2 : true if expr1 and expr2 are both true

expr1 –o expr2 : true if expr1 or expr2 is true

\(expr\) : escaped parantheses are used for grouing expressions

CONTROL STRUCTURES:

Conditional if:The conditional if statement is available in both shells, but has a different syntax

in each.

if condition1

then

command list if condition1 is true

[elif condition2

then command list if condition2 is true]

[else

command list if condition1 is false]

fi

The conditions to be tested for are usually done with the test, or [] command .

 The if and then must be separated, either with a <newline> or a semicolon (;).

#!/bin/sh

if [$# -ge 2]

then

echo $2

elif [$# -eq 1]; then

echo $1

else

echo No input

fi

15

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

There are required spaces in the format of the conditional test, one after [and one before]. This

script should respond differently depending upon whether there are zero, one or more arguments

on the command line. First with no arguments:

$./if.sh

No input

Now with one argument:

$./if.sh one

one

And now with two arguments:

$./if.sh one two

Two

while ... do ... done

The while command executes the commands in list2 as long as the last command in list1

succeeds.

while list1

do

list2

done

The following commands can be used to control loops

break: causes the loop to end immediately

loop: causes the loop jump immediately to the next iteration

until ... do ... done

The until command executes the commands in list2 as long as the last command in list1 fails.

until list1

do

list2

done

$ cat until.sh

x=1

until [$x –gt] 3

do

case ..in ...esac

The case command supports multi-way branching based on the value of a single string and has

the following syntax

case expression in

pattern{|pattern}*)

list

;;

Esac

for ... do ... done

16

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

The for comman allows a list of commnds to be executed several times, using a differnt value of

the loop

avriable during each iteration.

for name [in {word}*]

do

list

done

The for command loops the value of the variable name through each word in the word list,

evaluating the commands list after each iteration. İf no word list is supplied, $@ (i.e. all

positional parameters) is used instead.

SHELL SCRIPT EXAMPLES:

1.$ cat for.sh

for color in red yelow blue

do

echo one color is $color

done

Output:

$ for.sh

one color is red

one color is yellow

2. $ cat if.sh

echo –n ’enter a number:’

read number

if [$number –lt 0]

then

echo negative

elif [$number –eq 0]

then

echo zero

else

echo positive

fi

Output:

$ if.sh

enter a number: 1

positive

$ if.sh

enter a number: -1

negative

